About
ブログ

軽い読み物に興味はありますか?

当ブログでは、色と見た目のニーズを向上させるための役立つ教育情報、アドバイス、研究結果、洞察を継続的に更新しています。ドリンクを片手に、私たちのストーリーをお楽しみください!

Explore Our Stories
01-Transmission-vs-Reflection-Find-the-Right.jpg

"Transmission vs. Reflection: Find the Right Spectrophotometer"

Read More

Explore Our Products

VIEW MORE

01-Transmission-vs-Reflection-Find-the-Right.jpg

"Transmission vs. Reflection: Find the Right Spectrophotometer"

Read More
01-Transmission-vs-Reflection-Find-the-Right.jpg

"Transmission vs. Reflection: Find the Right Spectrophotometer"

Read More
01-Transmission-vs-Reflection-Find-the-Right.jpg

"Transmission vs. Reflection: Find the Right Spectrophotometer"

Read More
01-Transmission-vs-Reflection-Find-the-Right.jpg

"Transmission vs. Reflection: Find the Right Spectrophotometer"

Read More
01-How-to-Measure-the-Color-of-Powders-With-the.jpg

"How to Measure the Color of Powders With the ColorFlex L2"

Read More
01-How-to-Measure-the-Color-of-Powders-With-the.jpg

"How to Measure the Color of Powders With the ColorFlex L2"

Read More

Transmission vs. Reflection: Find the Right Spectrophotometer

Posted on 1月 28, 2026 by HunterLab

Spectrophotometers empower manufacturers across numerous industries to capture accurate color and spectral data. These measurements support regulatory compliance, conformance with industry standards, and quality assurance that keeps customer satisfaction and loyalty high. Modern solutions offer measurement through either transmission or reflectance optical configurations.

Learning more about these approaches, their ideal substrates and applications, and their differences will guide you to the best solution for your color measurement needs.

Understanding Color Measurement

Light is the foundation of color measurement, with its wavelengths in the visible spectrum ranging from violet at 380 nanometers to red at 780 nanometers. The energy a light source provides varies across the spectrum depending on the light source. When it encounters matter, its wavelengths are either reflected, absorbed, refracted, transmitted, scattered, or diffracted. The object's chemical makeup helps determine what photons it will absorb versus those it emits or transmits. These emitted or transmitted wavelengths then enter the human eye, stimulating its photoreceptors. Emitted or transmitted wavelengths are the colors our eyes ‘see’ depending on where the energy falls within the visible spectrum.

Color perceptions vary between humans, making visual comparisons unreliable and underscoring the need for scientific color measurement solutions. Spectrophotometers simplify the task by analyzing and quantifying color in widely accepted color spaces like CIELAB and CIE XYZ. Transmission and reflectance are the two primary configurations spectrophotometers use to capture and report color and spectral data.

Color Measurement Through Transmission

When spectrophotometers measure color by transmission, they pass light directly through the sample. An optical sensor on the opposite side of the sample collects the energy for analysis and reporting.

The Science Behind Transmission Measurement

Measuring wavelengths through the transmission of color quantifies them into a ratio called transmittance. In scientific terms, transmittance is the percentage of incoming light that passes through a sample. The sample will also absorb a certain amount of the energy, requiring precise calculations using the Beer-Lambert Law, which describes how light is absorbed when it passes through matter.

Transmission measurements typically need at least 30% of the source light to pass through the sample with the light source at a perpendicular angle.

Key Considerations for Choosing Transmissive vs. Reflective Measurement

Transmission measurements work for transparent to translucent materials that allow 30% or more of the light to pass through — even if the surface is textured, like etched glass.

Opaque samples, which don’t let enough light through, are better measured using reflectance.

Applications for Transmission Color Measurement

Common applications for transmission color measurement include quantifying color in:

  • Foods and beverages: Products ranging from edible oils to fruit juices and food dyes are compatible with transmittance measurement.
  • Plastics: This approach is widely used in the plastics industry for food and beverage containers, transparent sheets and film, eyeglass lenses, and medical equipment like syringes, IV bags, and other clear medical devices.
  • Chemicals: Use this method to quantify color in motor oils, lubricants, and petrochemicals.
  • Pharmaceuticals: Injectable solutions and liquid medicines to monitor purity and detect any unwanted color changes.

Transmittance is also the most reliable color measurement approach for everyday products like clear liquid detergents and ophthalmic lense

Posted in Color Measurement

Transmission vs. Reflection: Find the Right Spectrophotometer

Posted on 1月 28, 2026 by HunterLab

Spectrophotometers empower manufacturers across numerous industries to capture accurate color and spectral data. These measurements support regulatory compliance, conformance with industry standards, and quality assurance that keeps customer satisfaction and loyalty high. Modern solutions offer measurement through either transmission or reflectance optical configurations.

Learning more about these approaches, their ideal substrates and applications, and their differences will guide you to the best solution for your color measurement needs.

Understanding Color Measurement

Light is the foundation of color measurement, with its wavelengths in the visible spectrum ranging from violet at 380 nanometers to red at 780 nanometers. The energy a light source provides varies across the spectrum depending on the light source. When it encounters matter, its wavelengths are either reflected, absorbed, refracted, transmitted, scattered, or diffracted. The object's chemical makeup helps determine what photons it will absorb versus those it emits or transmits. These emitted or transmitted wavelengths then enter the human eye, stimulating its photoreceptors. Emitted or transmitted wavelengths are the colors our eyes ‘see’ depending on where the energy falls within the visible spectrum.

Color perceptions vary between humans, making visual comparisons unreliable and underscoring the need for scientific color measurement solutions. Spectrophotometers simplify the task by analyzing and quantifying color in widely accepted color spaces like CIELAB and CIE XYZ. Transmission and reflectance are the two primary configurations spectrophotometers use to capture and report color and spectral data.

Color Measurement Through Transmission

When spectrophotometers measure color by transmission, they pass light directly through the sample. An optical sensor on the opposite side of the sample collects the energy for analysis and reporting.

The Science Behind Transmission Measurement

Measuring wavelengths through the transmission of color quantifies them into a ratio called transmittance. In scientific terms, transmittance is the percentage of incoming light that passes through a sample. The sample will also absorb a certain amount of the energy, requiring precise calculations using the Beer-Lambert Law, which describes how light is absorbed when it passes through matter.

Transmission measurements typically need at least 30% of the source light to pass through the sample with the light source at a perpendicular angle.

Key Considerations for Choosing Transmissive vs. Reflective Measurement

Transmission measurements work for transparent to translucent materials that allow 30% or more of the light to pass through — even if the surface is textured, like etched glass.

Opaque samples, which don’t let enough light through, are better measured using reflectance.

Applications for Transmission Color Measurement

Common applications for transmission color measurement include quantifying color in:

  • Foods and beverages: Products ranging from edible oils to fruit juices and food dyes are compatible with transmittance measurement.
  • Plastics: This approach is widely used in the plastics industry for food and beverage containers, transparent sheets and film, eyeglass lenses, and medical equipment like syringes, IV bags, and other clear medical devices.
  • Chemicals: Use this method to quantify color in motor oils, lubricants, and petrochemicals.
  • Pharmaceuticals: Injectable solutions and liquid medicines to monitor purity and detect any unwanted color changes.

Transmittance is also the most reliable color measurement approach for everyday products like clear liquid detergents and ophthalmic lense

Posted in Color Measurement

Transmission vs. Reflection: Find the Right Spectrophotometer

Posted on 1月 28, 2026 by HunterLab
Posted in Color Measurement

Transmission vs. Reflection: Find the Right Spectrophotometer

Posted on 1月 28, 2026 by HunterLab

Los espectrofotómetros permiten a los fabricantes de numerosos sectores capturar datos precisos sobre el color y el espectro. Estas mediciones respaldan el cumplimiento normativo, la conformidad con los estándares del sector y el control de calidad, lo que mantiene altos los niveles de satisfacción y fidelidad de los clientes. Las soluciones modernas ofrecen mediciones mediante configuraciones ópticas de transmisión o reflectancia.

Conocer mejor estos métodos, sus sustratos y aplicaciones ideales, así como sus diferencias, le ayudará a encontrar la mejor solución para sus necesidades de medición del color.

Comprender la medición del color

La luz es la base de la medición del color, con sus longitudes de onda en el espectro visible que van desde el violeta a 380 nanómetros hasta el rojo a 780 nanómetros. La energía que proporciona una fuente de luz varía a lo largo del espectro dependiendo de la fuente de luz. Cuando encuentra materia, sus longitudes de onda se reflejan, absorben, refractan, transmiten, dispersan o difractan. La composición química del objeto ayuda a determinar qué fotones absorberá frente a los que emite o transmite. Estas longitudes de onda emitidas o transmitidas entran entonces en el ojo humano, estimulando sus fotorreceptores. Las longitudes de onda emitidas o transmitidas son los colores que nuestros ojos «ven» dependiendo de dónde caiga la energía dentro del espectro visible.

La percepción del color varía entre las personas, lo que hace que las comparaciones visuales sean poco fiables y subraya la necesidad de soluciones científicas para la medición del color. Los espectrofotómetros simplifican la tarea al analizar y cuantificar el color en espacios de color ampliamente aceptados como CIELAB y CIE XYZ. La transmisión y la reflectancia son las dos configuraciones principales que utilizan los espectrofotómetros para capturar y reportar datos de color y espectrales.

Medición del color mediante transmisión

Cuando los espectrofotómetros miden el color por transmisión, hacen pasar la luz directamente a través de la muestra. Un sensor óptico situado en el lado opuesto de la muestra recoge la energía para su análisis y registro.

La ciencia detrás de la medición de la transmisión

La medición de las longitudes de onda a través de la transmisión del color las cuantifica en una relación denominada transmitancia. En términos científicos, la transmitancia es el porcentaje de luz entrante que atraviesa una muestra. La muestra también absorberá una cierta cantidad de energía, lo que requiere cálculos precisos utilizando la ley de Beer-Lambert, que describe cómo se absorbe la luz cuando atraviesa la materia.

Las mediciones de transmisión suelen requerir que al menos el 30 % de la luz de la fuente atraviese la muestra con la fuente de luz en ángulo perpendicular.

Consideraciones clave para elegir entre la medición transmisiva y la medición reflectiva

Las mediciones de transmisión funcionan con materiales transparentes a translúcidos que permiten el paso del 30 % o más de la luz, incluso si la superficie tiene textura, como el vidrio grabado.

Las muestras opacas, que no dejan pasar suficiente luz, se miden mejor utilizando la reflectancia.

Aplicaciones para la medición del color de la transmisión

Las aplicaciones comunes para la medición del color de la transmisión incluyen la cuantificación del color en:

  • Alimentos y bebidas: Los productos que van desde aceites comestibles hasta zumos de frutas y colorantes alimentarios son compatibles con la medición de la transmitancia.
  • Plásticos: Este enfoque se utiliza ampliamente en la industria del plástico para envases de alimentos y bebidas, láminas transparentes y películas, lentes de gafas y equipos médicos como jeringas, bolsas intravenosas y otros dispositivos médicos transparentes.
  • Productos químicos: Utilice este método para cuantificar el color en aceites de motor, lubricantes y productos petroquímicos.
  • Productos farmacéuticos: Soluciones inyectables y medicamentos líquidos para controlar la pureza y detectar cualquier cambio de color no deseado.

La transmitancia es también el método de medición del color más fiable para productos cotidianos como los detergentes líquidos transparentes y las lentes oftálmicas.

Posted in Color Measurement

Transmission vs. Reflection: Find the Right Spectrophotometer

Posted on 1月 28, 2026 by HunterLab

分光光度計は、様々な産業のメーカーが正確な色と分光データを取得することを可能にします。これらの測定は、規制順守、業界標準への適合、そして顧客満足度とロイヤルティを高く保つ品質保証を支えます。現代のソリューションは、透過または反射の光学構成のいずれかによる測定を提供します。

これらの手法、その理想的な基材と用途、そして違いについてさらに学ぶことで、貴社の色測定ニーズに最適な解決策へと導くでしょう。

色測定の理解

光は色測定の基礎であり、その可視スペクトル内の波長は、380ナノメートルの紫から780ナノメートルの赤まで及びます。 光源が提供するエネルギーは、光源によってスペクトル全体で変化します。物質に遭遇すると、その波長は反射、吸収、屈折、透過、散乱、または回折されます。 物体の化学組成は、吸収される光子と放出または透過される光子の区別に影響を与えます。これらの放出または透過された波長が人間の目に入り、視細胞を刺激します。放出または透過された波長は、エネルギーが可視スペクトル内のどこに位置するかによって、私たちの目が「見る」色となります。

人間の色彩知覚には個人差があるため、視覚的な比較は信頼性が低く、科学的な色彩測定ソリューションの必要性が強調される。分光光度計は、CIELABやCIE XYZといった広く受け入れられている色空間で色彩を分析・定量化することで、この作業を簡素化する。分光光度計が色彩および分光データを取得・報告するために用いる主な構成は、透過法と反射法の2種類である。

透過法による色測定

分光光度計が透過法で色を測定する場合、光を直接試料に通す。試料の反対側にある光学センサーが分析と報告のためにエネルギーを収集する。

伝送測定の科学的根拠

色の透過による波長の測定は、透過率と呼ばれる比率に定量化される。科学的に言えば、透過率とは試料を通過する入射光の割合(%)である。試料はまた一定のエネルギーを吸収するため、物質を通過する光が吸収される仕組みを説明するビール・ランベルトの法則を用いた精密な計算が必要となる。

透過測定では通常、光源を垂直方向に配置し、光源光の少なくとも30%が試料を通過する必要がある。

透過式測定と反射式測定の選択における重要な考慮事項

透過率測定は、30%以上の光を通す透明から半透明の材料に有効です。表面がエッチング加工されたガラスのように凹凸があっても測定可能です。

十分な光を通さない不透明なサンプルは、反射率を用いて測定する方が適している。

伝送色測定の応用

伝送色測定の一般的な用途には、以下の分野における色の定量化が含まれます:

  • 食品および飲料: 食用油から果汁飲料、食品着色料に至る製品は、透過率測定に対応しています。
  • プラスチック: この手法は食品・飲料容器、透明シートやフィルム、眼鏡レンズ、注射器や点滴バッグなどの医療機器をはじめとする透明医療機器など、プラスチック産業で広く利用されています。
  • 化学品: この方法を用いて、エンジンオイル中の色、潤滑油、および石油化学製品を定量する。
  • 医薬品: 注射用溶液および液状医薬品において、純度を監視し、望ましくない変色を検出するため。

透過率はまた、日常的な透明液体洗剤や眼科用レンズなどの製品において最も信頼性の高い色測定手法である。

Posted in Color Measurement

How to Measure the Color of Powders With the ColorFlex L2

Posted on 1月 28, 2026 by HunterLab

Loose powders present several color measurement challenges, from nonuniform samples to light interference. These challenges exist across everything from powdered chemicals to cocoa and baking powder. The ColorFlex L2 overcomes all the challenges of powder color measurement, offering an easy-to-use design and high-quality results. 

The Difficulties of Powder Color Measurement

Understanding the challenges faced in color measurement enables you to address them more effectively. Here are the most common issues in collecting spectral data for powders:

  • Nonuniformity: Powders consist of tiny particles that appear differently depending on how they are prepared. 
  • Light sensitivity: Powders cause light trapping, shadowing, and ambient light interference, which can result in inaccurate measurements. 
  • Sample size: Powders often consist of a small amount of material, but the sample must be thick enough to create an opaque layer. 

Posted in Color Measurement

How to Measure the Color of Powders With the ColorFlex L2

Posted on 1月 28, 2026 by HunterLab

Loose powders present several color measurement challenges, from nonuniform samples to light interference. These challenges exist across everything from powdered chemicals to cocoa and baking powder. The ColorFlex L2 overcomes all the challenges of powder color measurement, offering an easy-to-use design and high-quality results. 

The Difficulties of Powder Color Measurement

Understanding the challenges faced in color measurement enables you to address them more effectively. Here are the most common issues in collecting spectral data for powders:

  • Nonuniformity: Powders consist of tiny particles that appear differently depending on how they are prepared. 
  • Light sensitivity: Powders cause light trapping, shadowing, and ambient light interference, which can result in inaccurate measurements. 
  • Sample size: Powders often consist of a small amount of material, but the sample must be thick enough to create an opaque layer. 

Posted in Color Measurement
Prev
1
2
3
…
Next

Most Related Posts

  • Transmission vs. Reflection: Find the Right Spectrophotometer
  • Transmission vs. Reflection: Find the Right Spectrophotometer
  • Transmission vs. Reflection: Find the Right Spectrophotometer
  • Transmission vs. Reflection: Find the Right Spectrophotometer
  • Transmission vs. Reflection: Find the Right Spectrophotometer
  • How to Measure the Color of Powders With the ColorFlex L2
  • How to Measure the Color of Powders With the ColorFlex L2
View More Related Posts

Follow us on social

  • LinkedIn
  • YouTube
  • facebook
  • X
  • instagram